QUINT-PS/96-110DC/24DC/10/CO

Преобразователь постоянного тока с технологией SFB, лакирован окунанием, регулирование в первичной цепи, вход: 96-110 В DC, выход: 24 В DC, выходной ток 10 А

Техническое описание 106467 ru 00

© PHOENIX CONTACT 2015-11-26

1 Описание

Преобразователь постоянного тока QUINT – Наивысшая степень готовности оборудования благодаря использованию технологии SFB

Компактный преобразователь постоянного тока нового поколения QUINT POWER максимально повышает степень готовности Вашего оборудования. Технология селективного автоматического отключения SFB (Selective Fuse Breaking) обеспечивает подачу тока, в 6 раз превышающего номинальный, в течение 12 мс, и, тем самым, возможность надежного и безопасного срабатывания стандартного защитного выключателя. Неисправные токовые цепи выборочно отключаются, неисправность изолируется, а важные компоненты оборудования остаются в эксплуатации. Постоянный контроль входного и выходного напряжения, а также выходного тока позволяет выполнять широкий ряд диагностических функций. В ходе выполнения профилактического функционального контроля система визуализирует критические рабочие состояния и сообщает о них управляющему устройству до возникновения неисправности.

Преобразователи постоянного тока используются в самых различных областях.

- Изменение уровня напряжения
- Восстановление выходного напряжения для поддержания постоянного напряжения на концах длинных проводов
- Формирование независимых систем питания посредством гальванической изоляции

Особенности:

- Более широкий диапазон входного напряжения
- Гальваническая изоляция
- Защита от подключения с неправильной полярностью
- превентивный функциональный контроль
- Надежный запуск тяжелых нагрузок благодаря использованию статического резерва мощности POWER BOOST
- Быстрое срабатывание стандартных защитных выключателей благодаря использованию динамического резерва мощности по технологии SER
- большая наработка на отказ > 772000 ч (40 °C)

Гибкость применения

- Нанесение покрытия погружением обеспечивает возможность применения в оксидирующих и сульфидирующих атмосферах с влажностью воздуха до 100 %
- настраеваемое выходное напряжение
- Возможно применение в Класс I, раздел 2, группы A, B, C, D (опасное размещение) ANSI-ISA 12.12

Всегда используйте в работе актуальную документацию. Ее Вы всегда может загрузить с нашего сайта phoenixcontact.net/products.

2 1	Содержание Описание	1
2	Содержание	2
3	Данные для заказа	3
4	Технические характеристики	4
5	нормативные документы по технике безопасности и инструкции по монтажу	
6	Блок-схема	
7	Конструкция	
, 8	Монтаж	
9	Размеры и положения при встраивании	
ء 10	Монтаж на несущую рейку	
10	10.1 Нормальное положение встраивания	
	10.1 Пормальное положение встраивания	
11	Вход	
	11.1 Защита первичной цепи	
12	Выход	12
	12.1 Защита вторичной цепи	
13	Выходные характеристики	12
14	Технология SFB	13
	14.1 Характеристика срабатывания переключателя LS	
	14.2 Указания по монтажу	
	14.3 Деактивация технологии SFB	
	14.4 Проектирование SFB	
15	Сигнализация	
	15.1 Активный коммутационный выход "DC OK"	
	15.2 Активный коммутационный выход "I < IN"	
	15.3 Активный коммутационный выход "UIN > 0,8 x UN"	
	15.4 Релейный контакт с нулевым потенциалом "DC OK" 13/14	
	15.5 Настроить сигнальный порог 96/110 В DC для сигнализации (нижняя сторона устройства)	
16	Изменение хар-к	
	16.1 Кривая изменения характеристик в зависимости от температуры	
	16.2 Изменение характеристик в зависимости от напряжения	
	16.3 Изменение характеристик в зависимости от расположения	18
17	Режимы работы	21
	17.1 Последовательный режим работы	
	17.2 Параллельный режим работы	
	17.3 Работа в режиме резервирования	
	17.4 Увеличение мощности	22

3 Данные для заказа

Описание	Тип	Арт. №	Штук
Преобразователь пост. тока QUINT с регулированием в первичной цепи и широким диапазоном входных напряжений для несущей рейки с технологией SFB (Selective Fuse Breaking), вход: 96–110 В пост. тока, выход: 24 В пост. тока / 10 А	QUINT-PS/96-110DC/24DC/10/CO	2905012	1
Принадлежности	Тип	Арт. №	Штук
Активный модуль резервирования QUINT для установки на монтажную рейку, с ACB-технологией SFB (Active Current Balancing) и функциями контроля, вход: 24 В DC, выход: 24 В DC / 2 х 10 А или 1 х 20 А, включая смонтированный универсальный адаптер для несущей рейки UTA 107/30	QUINT-ORING/24DC/2X10/1X20	2320173	1
Универсальный адаптер для монтажной рейки	UTA 107/30	2320089	100
Универсальный настенный адаптер	UWA 182/52	2938235	1
Адаптер для установки блоков питания QUINT-PS на монтажную рейку S7-300	QUINT-PS-ADAPTERS7/1	2938196	1
Гермомагнитный защитный выключатель, 1-полюсный, карактеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 1A SFB P	2800836	1
Термомагнитный защитный выключатель, 1-полюсный, характеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 2A SFB P	2800837	1
Гермомагнитный защитный выключатель, 1-полюсный, карактеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 3A SFB P	2800838	1
Гермомагнитный защитный выключатель, 1-полюсный, карактеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 4A SFB P	2800839	1
Гермомагнитный защитный выключатель, 1-полюсный, карактеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 5A SFB P	2800840	1
Гермомагнитный защитный выключатель, 1-полюсный, карактеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 12A SFB P	2800844	1
Термомагнитный защитный выключатель, 1-полюсный, характеристика срабатывания SFB, 1 переключающий контакт, штекер для базового элемента.	CB TM1 16A SFB P	2800845	1

i

Поскольку ассортимент принадлежностей постоянно расширяется, имеющиеся в наличии товары всегда можно найти в разделе загрузки на странице изделия.

4 Технические характеристики

Входные данные	
Номинальное напряжение на входе	96 B DC 110 B DC
Диапазон входных напряжений	67,2 B DC 154 B DC
Потребляемый ток	3,5 A (96 B DC) 3,1 A (110 B DC)
Ограничение пускового тока	< 10 А (стандартный (типовой))
² t	0,37 A ² c
Провалы напряжения в сети	> 10 мс (96 B DC)
Защитная схема	Защита от перенапряжений при переходных процессах Варистор
Защита от переполюсовки	≤ 154 B DC
Входной предохранитель, встроенный	10 А (внутренний (защита модуля))
Выходные данные	
Номинальное напряжение на выходе	24 B DC ±1 %
Диапазон настройки выходного напряжения	18 B DC 29,5 B DC (> 24 В мощность постоянна)
Выходной ток	10 A (-40 °C 60 °C) 12,5 A (c POWER BOOST, -40 °C 40 °C в непрерывном режиме, U _{OUT} - 24 B DC) 60 A (Технология SFB, 12 мс)
Электромагнитный расцепитель	B2 / B4 / B6
активное ограничение тока	18 A
Нагрузка, емкостная, максимальная	неограниченно
Рассогласование	< 1 % (статическое изменение нагрузки 10 % 90 %) < 2 % (динамическое изменение нагрузки 10 % 90 %) < 0,1 % (отклонение входного напряжения ±10 %)
кпд	> 92 % (U _{IN} 96 B DC / U _{OUT} 24 B DC)
Время нарастания	< 2 MC (U _{Bых} (10 % 90 %))
Остаточная пульсация	< 20 мB _(ДА)
Уровень шума при коммутационных переходных процессах	< 10 мВ _(ДА) (20 МГц)
Возможность параллельного подключения	да, резервирование и повышение мощности
Возможность последовательного подключения	Да
Защита от импульсных перенапряжений на выходе	< 35 B DC
Стойкость к обратному питанию	35 B DC
Баланс мощности	
Рассеиваемая мощность, без нагрузки, макс.	4 Bt (U _{IN} 110 B DC)
Рассеиваемая мощность, номинальная нагрузка, макс.	22 Вт (U _{IN} 110 В DC)
Индикация рабочих состояний и диагностичес нии, активный	ких сообщений при нормальном постоянном напряже-
активный коммутационный выход	U _{вых} > 0,9 x U _н : Максимальный сигнал
Напряжение	18 B DC 24 B DC
Гок	< 20 мА (защищен от коротких замыканий)
Индикатор состояния	Светодиодный индикатор "DC ОК" зеленого цвета
Индикация рабочих состояний и диагностичес	ких сообщений POWER BOOST, активн.
активный коммутационный выход	I _{OUT} < I _N : максимальный сигнал
Напряжение	18 B DC 24 B DC
Гок	< 20 мА (защищен от коротких замыканий)
Индикатор состояния	Светодиод "BOOST" желтый / I _{BыX} > I _N : светодиод горит

Индикация рабочих состояний и диагностических сообщений U_{IN} OK, активно

активный коммутационный выход $U_{IN} > 19,2 \; B$: сигнал H-уровня

Напряжение 18 B DC ... 24 B DC

Ток ≤ 20 мА (защищен от коротких замыканий)

Индикация рабочих состояний и диагностических сообщений при нормальном постоянном напряжении, сухой

активный коммутационный выход Реле

Общие характеристики

Напряжения изоляции на входе / выходе 1,5 кВ (Типовое исп.) 1 кВ (Выборочное исп.)

МТВF (IEC 61709, SN 29500) > 772000 ч (40 °C)
Нормальное положение встраивания горизонтальная DIN-рейка NS 35, EN 60715

Размеры Ш x B x Г (нормальное положение встраивания / при по-

Размеры ш х в х г (нормальное положение встраивания / при по-

Размеры Ш / В / Γ (с разворотом 270° по оси X) 122 мм / 130 мм / 51 мм

Масса 0,9 кг

Корпус

Степень защиты ІР20

Исполнение корпуса алюминий (AlMg3)

Исполнение крышки Оцинкованная листовая сталь, без хрома(VI)

Характеристики разъемов, вход

Тип подключения

Сечение жесткого провода

Сечение гибкого провода

О,2 мм² ... 2,5 мм²

Сечение провода АWG/ксmil

Длина снятия изоляции

Резьба винтов

МЗ

Момент затяжки

Вставные винтовые клеммы

О,2 мм² ... 2,5 мм²

24 ... 12

ММ

ММ

МОМЕНТ ЗАТЯЖКИ

В ММ

О,5 НМ ... 0,6 НМ

Параметры подключения выхода / сигналов

Тип подключения вставные винтовые клеммы

Сечение жесткого провода

Сечение гибкого провода

О,2 мм² ... 2,5 мм²

Сечение провода AWG/kcmil

Длина снятия изоляции

Резьба винтов

МЗ

Момент затяжки

Вставные винтовые клеммы

О,2 мм² ... 2,5 мм²

24 ... 12

7 мм

Розьба винтов

МЗ

Момент затяжки

О,5 Нм ... 0,6 Нм

Окружающие условия	
Степень защиты	1
Температура окружающей среды (при эксплуатации)	-25 °C 70 °C (> 60 °C Derating: 2,5 %/K)
Температура окружающей среды (протестировано по типу запуска)	-40 °C
Температура окружающей среды (хранение/транспорт)	-40 °C 85 °C
Макс. допустимая отн. влажность воздуха (при эксплуатации)	100 % (При 25 °C, без выпадения конденсата)
Вибрация (при эксплуатации)	< 15 Гц, амплитуда ±2,5 мм (согласно МЭК 60068-2-6) 15 Гц 150 Гц, 2,3г, 90 мин.
Ударопрочность	30г, на каждую ось (согласно МЭК 60068-2-27)
Степень загрязнения согласно EN 50178	2
Климатический класс	3К3 (согласно EN 60721)
Сертификаты	
Сертификация UL	UL/C-UL, зарегистрированный UL 508 UL/C-UL, одобренный UL 60950

Действующие аттестаты / допуски для каждого изделия подготовлены для скачивания по ссылке на странице изделия на phoenixcontact.net/products.

Помехоустойчивость согласно EN 61000-6-2		
	Требования EN 61000-6-2	проверено
Устойчивость к электростатическим разрядам EN 61000-4-2		
Конктактная разрядка корпуса	4 кВ (Уровень контроля 2)	8 кВ (Уровень контроля 4)
Воздушная разрядка корпуса	8 кВ (Уровень контроля 3)	15 кВ (Уровень контроля 4)
Примечания	Критерий В	Критерий А
Электромагнитные ВЧ-поля EN 61000-4-3		
Диапазон частот	80 МГц 1 ГГц	80 МГц 1 ГГц
Напряженность проверочного поля	10 В/м (Уровень контроля 3)	20 В/м (Уровень контроля 3)
Диапазон частот	1,4 ГГц 2 ГГц	1 ГГц 2 ГГц
Напряженность проверочного поля	3 В/м (Уровень контроля 2)	20 В/м (Уровень контроля 3)
Диапазон частот	2 ГГц 2,7 ГГц	2 ГГц 3 ГГц
Напряженность проверочного поля	1 В/м (Уровень контроля 1)	10 В/м (Уровень контроля 3)
Примечания	Критерий А	Критерий А
Испытание на невосприимчивость к быстрым переходным процессам	и всплескам EN 61000-4-4	
Вход	2 кВ (Уровень контроля 3 - асимметричный)	4 кВ (Уровень контроля 4 - асимметричный)
Выход	2 кВ (Уровень контроля 3 - асимметричный)	2 кВ (Уровень контроля 3 - асимметричный)
Сигнал	1 кВ (Уровень контроля 3 - асимметричный)	2 кВ (Уровень контроля 4 - асимметричный)
Примечания	Критерий В	Критерий А
Нагрузка по импульсному току (выбросам) EN 61000-4-5		
Вход	0,5 кВ (Уровень контроля 1 - симметричный) 0,5 кВ (Уровень контроля 1 - асимметричный)	2 кВ (Уровень контроля 4 - симметричный) 4 кВ (Уровень контроля 4 - асимметричный)
Выход	0,5 кВ (Уровень контроля 1 - симметричный) 0,5 кВ (Уровень контроля 1 - асимметричный)	1 кВ (Уровень контроля 3 - симметричный) 2 кВ (Уровень контроля 3 - асимметричный)
Сигнал	1 кВ (Уровень контроля 2 - асимметричный)	1 кВ (Уровень контроля 2 - асимметричный)
Примечания	Критерий В	Критерий А
Влияние помех по цепи питания EN 61000-4-6		
Вход / выход / сигнал	асимметричный	асимметричный
Диапазон частот	0,15 МГц 80 МГц	0,15 МГц 80 МГц
Напряжение	10 В (Уровень контроля 3)	10 В (Уровень контроля 3)
Примечания	Критерий А	Критерий А
Излучение электромагнитных помех согл. EN 610	00-6-3	
Напряжение радиопомех согл. EN 55011	EN 55011 (EN 55022) класс В, исполь помещениях	зование в промышленных и ж

Излучение радиопомех согл. EN 55011

Все технические показатели являются номинальными данными и приведены для температуры окружающей среды 25 °С и относительной влажности воздуха 70% при 2000 м выше уровня моря.

помещениях

EN 55011 (EN 55022) класс В, использование в промышленных и жилых

5 Нормативные документы по технике безопасности и инструкции по монтажу

Перед вводом в эксплуатацию необходимо обеспечить следующее:

- Устройство должен монтировать, вводить в эксплуатацию и обслуживать только квалифицированный специалист.
- Требуется соблюдение государственных норм по технике безопасности и предотвращению несчастных случаев.

ПРЕДУПРЕЖДЕНИЕ: Опасно при применении не в соответствии с назначением

- Это встраиваемое устройство.
- Класс защиты устройства IP20 (МЭК 60529/EN 60529)
 предусматривает использование в условиях чистой и сухой среды. Не подвергать устройство нагрузкам, превышающим указанные предельные значения.
- Не подвергать устройство механическим и/или термическим нагрузкам, превышающим указанные предельные значения.
- Монтаж и введение в эксплуатацию должны производиться только квалифицированными специалистами. При этом должны соблюдаться соответствующие национальные предписания.
- Запрещается открывать или модифицировать устройство. Не ремонтируйте устройство самостоятельно, а заменяйте его на аналогичное. Ремонт вправе выполнять только изготовитель. Изготовитель не несет ответственности за ущерб в результате несоблюдения предписаний.

ВНИМАНИЕ:

Перед вводом в эксплуатацию необходимо обеспечить следующее:

- Подключение устройств должно производиться только квалифицированными специалистами, при этом должны быть приняты меры по защите от удара электрическим током!
- Согласно требованиям EN 60950-1 устройство должно коммутироваться без напряжения при отключенном источнике (например, посредством защитного переключателя, расположенного на первичной стороне)!
- Все входные кабели должны иметь соответствующие защитные устройства, а также размеры.
- Все выходные кабели должны быть рассчитаны на макс. выходной ток прибора или оснащены соответствующим защитным устройством!
- Необходимо обеспечить достаточную конвекцию!

ВЗРЫВООПАСНО

Демонтаж оборудования должен производиться только после отключения питания и в условиях отсутствия взрывоопасной среды.

ОПАСНОСТЬ

Никогда не производите работы на оборудовании, находящемся под напряжением!

В зависимости от температуры окружающей среды и нагрузки корпуса устройств могут сильно нагреваться!

6 Блок-схема

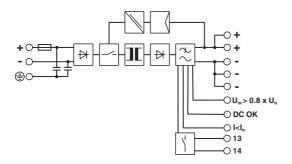


Рисунок 1 Принципиальная схема

7 Конструкция

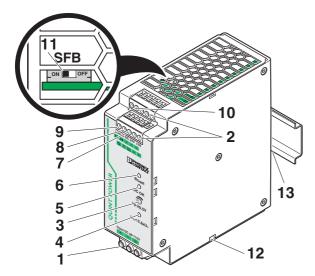


Рисунок 2 Функциональные элементы

- 1 Вход постоянного тока
- 2 Выход пост. тока
- **3** Потенциометр 18 ... 29,5 В DC
- **4** Светодиод " U_{IN} < 0,8 х U_{N} ", желтый
- 5 Светодиод "DC ОК", зеленый
- 6 Светодиод "BOOST", желтый
- **7** Активный коммутационный выход $U_{IN} > 0.8 \times U_{N}$
- 8 Активный коммутационный выход I < I_{IN}
- 9 Активный коммутационный выход DC OK
- 10 Релейный контакт DC ОК 13/14
- **11** Переключатель SFB (слева: SFB активирован, справа: SFB деактивирован)
- 12 Разгрузка кабелей от натяжения
- 13 Адаптер для монтажной рейки

8 Монтаж

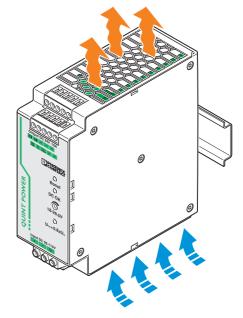


Рисунок 3 Конвекция

- Для обеспечения достаточной конвекции рекомендуемое расстояние до соседнего устройства в вертикальном направлении должно составлять не менее 50 мм. Для реализации функций преобразователя постоянного тока, соответствующих его предназначению, расстояние сбоку от устройства должно составлять по меньшей мере 5 мм, а между активными структурными компонентами по меньшей мере 15 мм.
- В зависимости от температуры окружающей среды и нагрузки корпус преобразователя постоянного тока может сильно нагреваться!

Преобразователь постоянного тока может устанавливаться на все монтажные рейки, соответствующие EN 60715, при этом следует соблюдать нормальное положение встраивания (клеммы для подключения проводников сверху и снизу).

9 Размеры и положения при встраивании

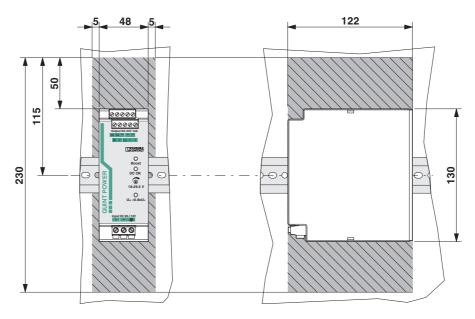
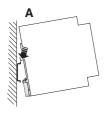
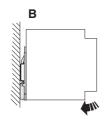


Рисунок 4 Размеры

Возможные положения при встраивании:

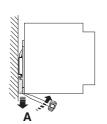
Нормальное положение встраивания: монтажная глубина 125 мм (+ монтажная рейка) (размещение крепления при поставке)

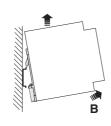

Монтажное положение с поворотом, 270° по оси Y, монтажная глубина: 51 мм (+ монтажная рейка)


10 Монтаж на несущую рейку

10.1 Нормальное положение встраивания

Монтаж:


Разместите преобразователь постоянного тока так, чтобы направляющая монтажной рейки располагалась над верхним краем горизонтально расположенной монтажной рейки, затем прижмите нижний край устройство. Оно закрепляется защелками.



Демонтаж:

С помощью отвертки разожмите защелку, и снимите преобразователь постоянного тока с верхнего края монтажной рейки.

10.2 Монтажное положение с поворотом на 270° по оси У

Повернутое расположение преобразователя постоянного тока достигается посредством монтажа под углом 270° к монтажной рейке. Для этого установите адаптер для монтажной рейки (UTA 107/30), как показано на рисунке. Прочие монтажные средства не требуются. Крепежные винты: Torx® T10 (момент затяжки 0,8 Нм ... 0,9 Нм).

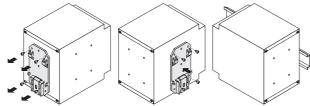


Рисунок 5 Монтажное положение с поворотом на 270° по оси Y

Также могут реализовываться прочие монтажные положения. В каждом случае должна учитываться кривая изменения характеристик в зависимости от положения монтажа.

11 Вход

Подключение входного напряжения производится через винтовые зажимы на винтовом соединении входа постоянного тока.

Преобразователь постоянного тока преобразует постоянное напряжение 67 ... 154 В в настраиваемое, регулируемое и гальванически развязанное выходное напряжение.

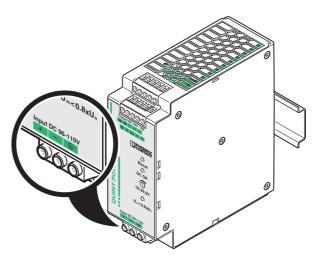


Рисунок 6 вход

11.1 Защита первичной цепи

Установка преобразователя постоянного тока должна производиться согласно требованиям EN 60950.

В прибор встроен предохранитель. Дополнительные устройства защиты не требуются.

Для минимизации степени падения напряжения используйте на первичной стороне провода большого поперечного сечения.

ВНИМАНИЕ: Устройство может быть повреждено

Причиной срабатывания внутреннего защитного устройства является неисправность устройства. В этом случае требуется проверка преобразователя постоянного тока на заводе-изготовителе!

12 Выход

Подключение выходного напряжения производится через винтовые зажимы винтового соединения выхода постоянного тока.

Выходное напряжение может быть настроено потенциометром.

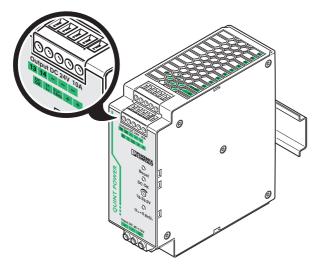


Рисунок 7 Выход

12.1 Защита вторичной цепи

Преобразователь постоянного тока защищен от короткого замыкания и работы на холостом ходу. В случае неисправности выходное напряжение ограничивается. Все выходные кабели должны быть рассчитаны на максимальный выходной ток прибора или оснащены соответствующим защитным устройством.

Для минимизации степени падения напряжения используйте на вторичной стороне провода большого поперечного сечения.

13 Выходные характеристики

Работу преобразователя постоянного тока с использованием статического резерва мощности POWER BOOST отображает представленная на рисунке кривая U/I. При температуре окружающей среды < 40 °C I_{BOOST} обеспечивается постоянно. При более высоких температурах - на несколько минут.

В случае короткого замыкания на вторичной стороне и перегрузки выходной ток ограничивается до I_{BOOST}. При этом преобразователь постоянного тока не отключается, а постоянно обеспечивает подачу выходного тока. При этом вторичное напряжение понижается до тех пор, пока не будет устранено короткое замыкание. Кривая U/I с резервом мощности POWER BOOST обеспечивает надежную подачу высоких токов включения емкостных нагрузок потребляющих устройств во входной цепи.

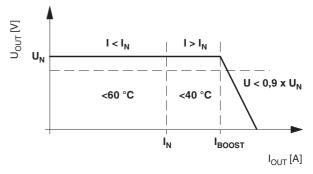


Рисунок 8 Выходная характеристика

- $U_N = 24 B$
- $I_N = 10 A$
- $I_{BOOST} = 12,5 A$
- Технология SFB = 60 A (для 12 мс)
- $P_N = 240 BT$
- Р_{ВООЅТ} = 300 Вт

14 Технология SFB

Технология селективного автоматического отключения SFB (Selective Fuse Breaking) обеспечивает надежное отключение неисправной цепи тока в случае короткого замыкания. В этом случае она обеспечивает подачу тока, в 6 раз превышающего номинальный, в течение 12 мс. Таким образом технология SFB инициирует точное срабатывание даже стандартного автоматического выключателя. Неисправность надежно изолируется, а важные компоненты оборудования остаются в эксплуатации.

14.1 Характеристика срабатывания переключателя LS

В течение 3 ... 5 мс, как правило, срабатывает линейный защитный автомат. Этого достаточно для того, чтобы избежать падения напряжения на параллельно подключенных потребляющих устройствах.

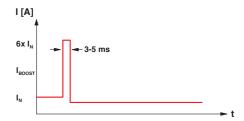


Рисунок 9 Быстрое срабатывание автоматических выключателей благодаря технологии SFB

14.2 Указания по монтажу

Чтобы использовать техонологию SFB преобразователей постоянного тока QUINT, примите во внимание следующие условия:

 В процессе формировании вторичной стороны используйте проектировочный шаблон, с помощью которого в зависимости от класса производительности преобразователя постоянного тока, поперечного сечения провода и типа защитного выключателя определяется максимальная длина проводника.

Актуальный проектировочный шаблон приведен в описании устройства в области загрузки.

 Источник питания должен обеспечивать подачу соответствующего токового импульса для питания преобразователя постоянного тока. Для этого Вы можете, к примеру, предварительно подключить источник питания типа QUINT SFB (см. принадлежности) или использовать аккумулятор соответствующей мощности. Следите за тем, чтобы полное сопротивление линии на входе преобразователя постоянного тока было по возможности минимальным, используя для этого короткие провода с большим поперечным сечением.

Учитывайте максимальное расстояние между источником питания и преобразователем постоянного тока.

(см. также проектирование SFB)

При невыполнении условий технология SFB может быть деактивирована.

14.3 Деактивация технологии SFB

Преобразователь постоянного тока оснащен дополнительным переключателем SFB, которым можно деактивировать технологию SFB.

Переключатель SFB расположен на верхней стороне корпуса и активируется с помощью подходящего инструмента, например, маленькой отвертки через вентиляционные отверстия.

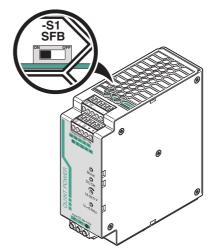


Рисунок 10 Положение переключателя SFB

Положение переключателя	Статус технологии SFB
слева	ВКЛ (заводская настройка)
справа	OFF

Включение и выключение технологии SFB можно производить только при выключенном преобразователе постоянного тока.

14.4 Проектирование SFB

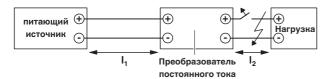


Рисунок 11 Длина проводов

Максимальное расстояние между преобразователем постоянного тока и потребляющим устройством (I₂)

Поперечное сечение [мм²]	0,75	1,0	1,5	2,5
Расстояние до I ₂ с линейным защитным автоматом C2 [м]	14	19	29	49
Расстояние до I ₂ с линейным защитным автоматом С4 [м]	4	5	8	14
Расстояние до I ₂ с линейным защитным автоматом В6 [м]	9	12	18	30

Расчеты выполняются на основании следующих параметров:

- Защитный выключатель производства компании Siemens, характеристика В и С (например, В6: 5SY6106-6)
- Характеристика В: электромагнитная система активации защитного выключателя, не позже чем при (5-кратный номинальный ток) х (коэффициент коррекции 1,2 при 0 Гц) = 6-кратный номинальный ток
- Характеристика С: электромагнитная система активации защитного выключателя, не позже чем при (10-кратный номинальный ток) х (коэффициент коррекции 1,2 при 0 Гц) = 12-кратный номинальный ток
- Температура окружающей среды: +20 °C
- Учитывается внутреннее сопротивление защитного выключателя.
- Помимо тока короткого замыкания соответствующий блок питания обеспечивает подачу тока в размере половины от номинального для параллельно подключенной цепи.

15 Сигнализация

Для контроля функционирования на выходе предусмотрен выходной контакт DC OK с активным уровнем, сигнальный выход POWER BOOST с активным уровнем, а также активный сигнальный выход $U_{\rm IN}$ OK. Кроме того, для непосредственного контроля работоспособности преобразователя постоянного тока предусмотрены светодиодные индикаторы DC OK, BOOST и $U_{\rm IN} < 0.8$ x $U_{\rm N}$.

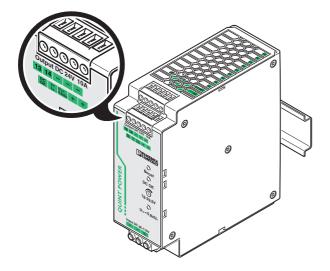
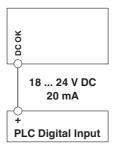
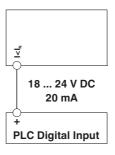


Рисунок 12 Сигнальные выходы


Постоянный контроль входного и выходного напряжения, а также выходного тока позволяет выявлять критические рабочие состояния до возникновения неисправности.

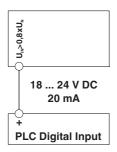
	I < I _N	I > I _N	U < 0,9 x U _N
Зеленый свето- диод "DC OK"	горит	горит	мигает
Желтый свето- диод "Boost"	не горит	горит	горит
активный ком- мутационный выход "DC OK"	high	high	low
активный ком- мутационный выход "I < I _N "	high	low	low
Релейный контакт DC OK 13/ 14	закрыт	закрыт	разомкнут
Объяснение	Нормальный режим работы	POWER BOOST, активн.	Перегрузка

	U _{ВХОД.} > 0,8 x U _N	U _{ВХОД.} < 0,8 x U _N
Желтый светодиод "U _{BXOД.} < 0,8 x U _N "	не горит	горит
активный коммутаци- онный выход "U _{IN} OK"	high	low
Объяснение	U _{ВХОД.} ОК	U _{ВХОД.} низкое


15.1 Активный коммутационный выход "DC ОК"

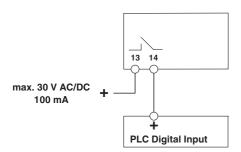
В обычном режиме преобразователя постоянного тока выходной сигнал DC OK ($U_{\rm OUT} > 0.9 \ {\rm x} \ {\rm U}_{\rm N}$) формируется между соединительными клеммами "DC OK" и "-" и выдерживает нагрузку до 20 мА. Сигнальный выход DC OK сообщает об отрицательном превышении выходного напряжения более чем 10% посредством переключения индикации с "aktiv high" на "low". Сигнальный контакт DC OK отсоединен от силового выхода. Таким образом исключается питание от постороннего источника питания через параллельно подключенные устройства.

15.2 Активный коммутационный выход "I < I_N"


В обычном режиме преобразователя постоянного тока выходной сигнал Boost (I < I $_N$) формируется между соединительными клеммами "I < I $_N$ " и "-" и выдерживает нагрузку до 20 мА. Сигнальный выход Boost сообщает об отрицательном превышении номинального тока посредством замены индикатора "aktiv high" на "low" и перехода в режим Boost.

15.3 Активный коммутационный выход " $U_{IN} > 0.8 \times U_{N}$ "

В обычном режиме преобразователя постоянного тока выходной сигнал $U_{\rm IN} > 0.8 \times U_{\rm N}$ формируется между соединительными клеммами


" $U_{\rm IN}$ > 0,8 x $U_{\rm N}$ " и "-" и выдерживает нагрузку до 20 мА. Сигнальный выход $U_{\rm IN}$ > 0,8 x $U_{\rm N}$ сообщает о чрезмерном снижении входного напряжения посредством переключения индикации с "aktiv high" на "low".

15.4 Релейный контакт с нулевым потенциалом "DC OK" 13/14

Релейный контакт с нулевым потенциалом расположен между соединительными клеммами 13 и 14 и выдерживает нагрузку до 100 мА при напряжении до 30 В перем./АС. Посредством разъединения замыкающего контакта релейный контакт сообщает об отрицательном превышении выходного напряжения более чем на 10%.

Релейный контакт отсоединен от силового выхода. Таким образом исключается питание от постороннего источника питания через параллельно подключенные устройства.

15.5 Настроить сигнальный порог 96/110 В DC для сигнализации (нижняя сторона устройства)

Номинальное входное напряжение преобразователя постоянного тока можно регулировать. Активируйте сигнальный порог при помощи переключателя в нижней части устройства. Возможны следующие настройки:

- Сигнальный порог 96 В DC активирован, положение переключателя сзади
- Сигнальный порог 110 В DC активирован (заводская настройка): положение переключателя впереди

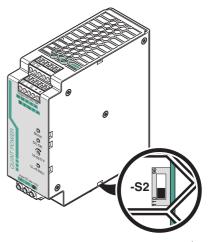
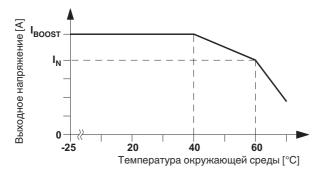



Рисунок 13 Переключатель сигнального порога 96/110 В DC (нижняя часть корпуса)

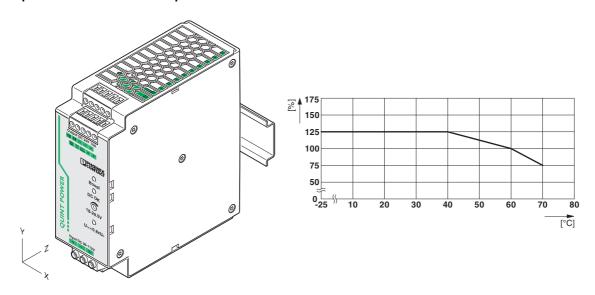
16 Изменение хар-к

16.1 Кривая изменения характеристик в зависимости от температуры

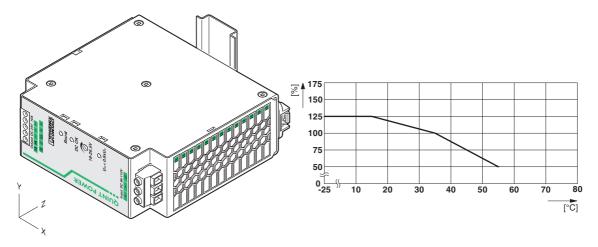
При температуре окружающей среды до $+40\,^{\circ}\mathrm{C}$ прибор в непрерывном режиме обеспечивает подачу выходного тока I_{BOOST} . Номинальный выходной ток I_{N} устройство может подавать при температуре до $+60\,^{\circ}\mathrm{C}$. Если температура превышает $+60\,^{\circ}\mathrm{C}$, то выходная мощность уменьшается на $2,5\,^{\circ}$ % на каждый кельвин увеличения температуры. При достижении температуры $+70\,^{\circ}\mathrm{C}$, а также в случае тепловой перегрузки устройство не отключается. Выходная мощность снижается до уровня, который может обеспечить устройство защиты. После охлаждения выходная мощность возрастает до нормального уровня.

16.2 Изменение характеристик в зависимости от напряжения

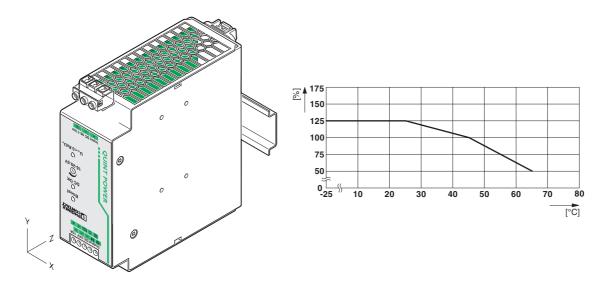
Кривая с изменениями характеристик в зависимости от напряжения отсутствует.

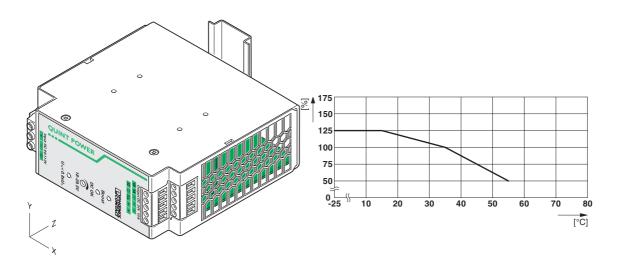

16.3 Изменение характеристик в зависимости от расположения

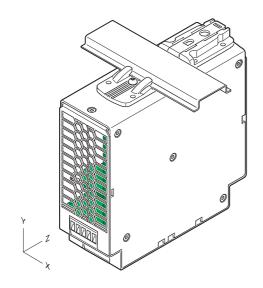
Преобразователь постоянного тока может устанавливаться на все монтажные рейки, соответствующие EN 60715, при этом следует соблюдать нормальное положение встраивания (клеммы для подключения проводников сверху и снизу).

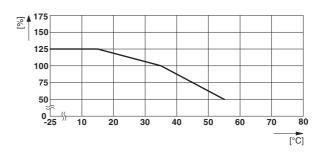

При установке устройства в другое положение необходимо принимать во внимание изменение характеристик.

В различных монтажных положениях на основании показаний кривой может быть определена максимальная выходная мощность для той или иной температуры окружающей среды.

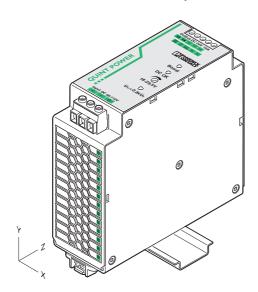

Нормальное положение встраивания

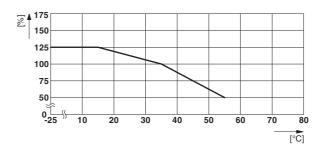

Монтажное положение с поворотом на 90° по оси X


Монтажное положение с поворотом на 180° по оси X



Монтажное положение с поворотом на 270° по оси X



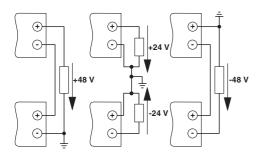

Монтажное положение с поворотом на 90° по оси Z

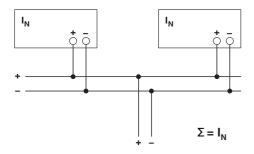
Монтажное положение с поворотом на 270° по оси Z

17 Режимы работы

17.1 Последовательный режим работы

Для удвоения напряжения можно подсоединять два преобразователя постоянного тока в ряд. Для этого можно использовать только преобразователи одинакового класса мощности. Подсоединение в ряд используется в тех случаях, когда выходного напряжения одного модуля недостаточно. К примеру, два преобразователя с номинальным выходным напряжением 24 В DC каждый, подсоединенные в ряд обеспечивают подачу напряжения 48 В DC. В зависимости от крепления соединения РЕ возможна подача выходных напряжений в +48 В или -48 В, а также ±24 В постоянного тока.




Рисунок 14 Последовательный режим работы

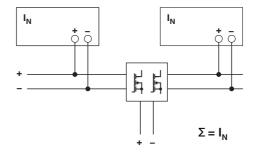
17.2 Параллельный режим работы

С целью резервирования, а также для увеличения выходной мощности преобразователи постоянного тока одного типа можно подключать параллельно. При этом изменение заводских настроек не требуется.

Для симметричного распределения нагрузки рекомендуется использовать для соединения преобразователей постоянного тока с магистральной шиной кабели одинаковой длины и аналогичного поперечного сечения!

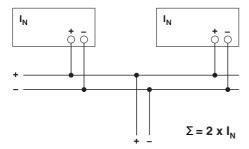
С точки зрения формирования системы в случае параллельного подключения более чем двух преобразователей постоянного тока каждый отдельный выход устройства должен быть оснащен защитной схемой (например, развязывающий диод или предохранитель постоянного тока). Таким образом в случае возникновения вторичной неисправности устройства предотвращается подача высоких обратных токов.

17.3 Работа в режиме резервирования


Резервные коммутационные схемы предназначены для питания оборудования, эксплуатация которого требует особенно высокой степени безопасности. В случае возникновения неисправности в первичной цепи первого источника питания второе устройство автоматически перенимает все функции бесперебойной подачи питания и наоборот. Поэтому параллельно подключенные источники питания параметрируются таким образом, чтобы общая потребность в подаче тока на все потребляющие устройства могла быть полностью удовлетворена одним источником. Для 100% резервирования требуется установка внешнего развязывающего диода.

Оптимальное резервирование достигается за счет реализации функций расцепления и контроля. Компания Phoenix Contact предлагает широкий ассортимент продуктов, предназначенных для выполнения данных задач (к примеру, QUINT-DIODE или QUINT-ORING).

Пример: диодный модуль



Пример: QUINT-ORING

17.4 Увеличение мощности

При параллельном подключении п преобразователей постоянного тока выходной ток увеличивается до $n \times I_N$. Такой способ подключения можно использовать, например, для расширения уже эксплуатируемых систем. Параллельное подключение рекомендуется также в тех случаях, когда мощности имеющегося преобразователя недостаточно для электропитания самой мощной нагрузки потребителя. В противном случае, потребители тока необходимо разделять на отдельные блоки или модули.

